Optical probe of the electronic excitations in pristine and heavily-doped multi-layer graphenes

Ping-Heng Tan
(谭平恒)

Institute of Semiconductors, Chinese Academy of Sciences
(中科院半导体所)

Sino-UK Workshop on Nanophotonics and Metamaterials, Beijing

Acknowledgements

Funding:

Institute of semiconductors, CAS
Mr. W. P. Han, Dr. W. J. Zhao, Dr. Z. H. Wu, Prof. K. Chang

University of Cambridge
Dr. G. Savini, Mr. A. Lombardo, Prof. A. C. Ferrari

Nankai University
Mr. H. Wang, Prof. Y. F. Wang

University of Oxford
Dr. N. Bonini, Dr. N. Marzari

What’s so special about graphene?

Graphene: Truely 2D system
Peculiar physical properties
- Massless Dirac Fermion
- Ballistic transport at LT
- Quantum hall effect at RT
- High mobility and high thermo-conductivity
- Nanoribbons with confinement gap

Observable with naked eye!

Optical contrast
Raman

Dimensionality of carbon

Diamond, graphite
3D

GRAPHENE, realized in 2004
(Novoselov, Science, 2004)

Carbon nanotubes
2D

1D

Fullerenes
0D
Opto-electronic applications

Spintronic device

Transparent electrode

FET

Battery
- Elad Pollak, *Nano Lett.* 2010

Touch Screen
- Ahn, *Nat Nanotech* 2010

Photodetector
- Bonaccorso, *Nature photonics* 2010

Graphene Multi-layers

Latil, *PRL* 2006

Ohia, *PRL* 2007

Probing electronic excitations in graphene layers via phonons?

Phonon could interact with electronic excitation.

Monolayer graphene

Multilayer graphene

High carrier density/mobility in graphene layers is important for applications!

- Distinctive band structure
-

\[E_{2g} \]

\[1582 \text{ cm}^{-1} \]

\[44 \text{ cm}^{-1} \]
Outline

- Probing Fermi level of heavily-doped graphene via 2D and G modes
- Probing low-energy electronic excitations near Dirac point via shear modes
- Conclusion

Probing electronic excitations in graphene layers via phonons G, 2D

GIC and its characterization

FeCl3-GIC

Pos(G) is very sensitive to the charge transfer and doping level in GIC

Raman spectra of FeCl3-intercalated FLG

613K, 6h
Probe Fermi energy of FeCl$_3$-intercalated GIC

\[2E_F = E_i - \hbar \omega_{ij} \]

\[E_F \approx 0.85\text{eV} \]

In agreement with EELS: 0.9eV

WJ Zhao, PH Tan*, JACS 2011

The way to probe low-energy excitations in graphene layers?

Low-energy excitation near Dirac point in graphene layers

~< 10 meV

Ohta, PRL 2007

Raman modes in graphene and graphite

C mode: sensitive to interlayer coupling!

A challenge to detect this mode!
VBG technique for low frequency measurement

Single-stage spectrograph + Notch filter of Volume Bragg Grating

3.0 cm\(^{-1}\) Ge/Si SL

Linear chain model for the shear mode

Displacement:

\[\omega_{\text{bLG}} = \sqrt{2} \sqrt{1 + \cos(\pi)\omega_{\text{b}}} \]

\[\omega_{\text{bLG}} = \sqrt{2} \omega_{\text{b}} \]

Interlayer force constant per unit area:

\[\alpha \sim 12.8 \times 10^{18} \text{ N m}^{-3} \]

Shear modulus:

\[C_{\text{sh}} = 4.3 \text{ GPa} \]

PH Tan*, Nature materials 2012

Breit-Wagner-Fano lineshape of the C mode

Breit-Wagner-Fano lineshape:

\[I(\omega) = \frac{I_0}{1 + \frac{2(\omega - \omega_0)}{\Gamma}} \frac{1 + \frac{1}{2q^2}}{1 + \frac{1}{2q^2}} \]

\[I(\omega) = \frac{I_0}{1 + \frac{2(\omega - \omega_0)}{\Gamma}} \frac{1 + \frac{1}{2q^2}}{1 + \frac{1}{2q^2}} \]

\[\omega_0 \] Uncoupled mode frequency

\[\Gamma \] Broadening parameter

\[q \] Coupling coefficient

FWHM = \(\Gamma (q^2 + 1)/(q^2 - 1) \)

Scott, RMP 1974

PH Tan*, Nature materials 2012
Probe the low energy transition near Dirac point in graphene layers

Raman spectroscopy is a versatile tool for probing electronic excitation in graphene layers.

1). Multi-wavelength Raman spectroscopy allows a direct measurement of the Fermi level for stage-1 FeCl$_3$-GIC.

2). The low energy of the C mode makes it a probe of electronic transitions near Dirac point, resulting in a Breit-Wigner-Fano lineshape due to resonance between the shear mode and electronic transitions.

Conclusion

Thanks for your attention.

Email: phtan@semi.ac.cn
Mobile: 13511036486
Website: http://skbms.semi.ac.cn

Any comments?