MARVIN AND MILO

Over 80 “Do try this at home!” experiments featuring Marvin and Milo, the IOP’s intrepid cat and dog team.

Cartoons

Straw water gun 2
Forceful comb 3
Soap sculptures 4
Spinning eggs 5
Sew an ice cube 6
Lava lamp 7
Magic balloon 8
Musical coat hanger 9
Alka-Seltzer rocket 10
Magic toothpicks 11
Wobbly stick 12
Foil boat 13
TV strobe light 14
Collapsing bottle 15
Convection snake 16
Bouncing balls 17
Reversing glass 18
Juice carton sprinkler 19
Balloon rocket 20
Melting race 21
Simple siphon 22
Impossible straws 23
Stringy water 24
Water jets 25
Indestructible bag 26
Magic apples 27
Singing paperclip trick 28
Chicken sounds 29
Cartesian ketchup sachet diver 30
Inseparable books 31
Dancing pop can 32
Homemade sunset 33
Gripping rice 34
Cup trick 35
DIY chromatography 36
On a roll 37
Clumsy catching 38
Loop the loop 39
Daredevil egg 40
Spinning rocket 41
Antigravity Maltesers 42
Loud lollies 43
Hovercrafty 44
Uphill biscuit tin 45
Key drop 46
Dry dive 47
Bubble race 48
Head hanger 49
Glowing 50
Water fall 51
Bottle blast 52
Quiche lightning 53
Doppler spin 54
Wobbler 55
Light fantastic 56
Glass lift 57
Eggstrordinary 58
Electric dill 59
Static UFO 60
Static spinning straw 61
Eerie blue water 62
Supercool 63
Psychedelic 64
Penny rocket 65
Mini magnifier 66
Marshmallow 67
Blue roses 68
Mirror mirror 69
Musical tea 70
Garden 71
Book launch 72
Bottle blowing 73
Waterproof sieve 74
Sound gas 75
Pouring light 76
Moody magnets 77
Flame balloon 78
Coathanger 79
Falling bubbles 80
Skewered 81
Heatrise 82
Reappearing coin 83
Electric seasoning 84
Slinky drop 85
Invisible bowl 86

© Institute of Physics 2013
DON'T TRY THIS AT HOME

What you need:
- drinking straw
- a friend
- a ruler
- scissors
- sticky tape
- saucer of water

with Marvin

The challenge:
To lift the water from the saucer using a straw without sucking.

Step 1.
Get your ruler and cut your drinking straw into two pieces: one 3 cm long and one 5 cm long.

Step 2.
Stand the smaller end of the straw in the saucer of water.

Join the pieces together with sticky tape along one side so they form a 90 degree angle, but leave both ends open.

So what happened?
Well, when air moves, its pressure falls. So when you blow, the pressure at the top of the straw drops. But the air over the saucer keeps the same pressure, so the water is pushed up the straw.

Now blow hard!

Visit www.physics.org keywords: air pressure, bernoulli
What you need:
- a nylon comb
- a water tap

Run the comb through your hair several times.

Slowly bring the comb towards the water, 10 cm below the tap.

When the comb is about 5 cm away, the water bends towards it!

Turn on the tap until you have a very thin stream of water.

Some objects, like hair and plastic, develop an electrical charge when rubbed together. The charge in your comb attracts tiny electrical charges in the water molecules, pulling them towards it.

Now grab your comb.

The End

[www.physics.org keywords: electrostatics, charge]
Bon jour! Today we are going to create soap art.

Put the soap on a dish in the microwave.

Heat it on full power for about 1 min.

Tiny pockets of gas in the soap get hot and expand in all directions, pushing the soap into strange and artistic shapes.

WARNING: The soap may smell strongly so don't do this before heating food!

What happened?

What you need:
- a microwave
- a bar of quality soap

with Marvin

The End

www.physics.org keywords: thermodynamics
MARVIN AND MILO

DO IT AT HOME

What you need:
- a raw egg
- a hard-boiled egg

with Marvin

Now spin the raw egg.
Stop it and let go immediately.
The egg starts spinning!
The yolk and white aren't attached to the shell so they carry on moving when you stop the raw egg.

Amaze your friends with this clever trick.
First, spin the hard-boiled egg.
Stop it and let go immediately.
Watch what happens.

Get a friend to mix up the eggs and use the trick to tell them apart.

The End

www.physics.org keywords: egg, spin
Do Try This at Home

Issue #5

What you need:
- Salt
- A cup of cold water
- 20 cm of sewing thread
- An ice cube

What to do:
1. Float the ice cube in the cup of water.
2. Lay one end of the thread (or a loop) on the top of the ice cube.
3. Sprinkle a little salt over the top.
4. Wait one minute and then gently lift the thread.
5. Salt lowers the melting point of water, so the ice melts. But the water quickly refreezes, trapping the string in place.

www.physics.org key words: melting, ice
MARVIN AND MILO

DO TRY THIS AT HOME

Today we are going to make a simple lava lamp.

First, fill the glass with lemonade.

Stir for 1 min or leave to go slightly flat.

What you need:
- a large glass
- lemonade (or fizzy water)
- peanuts (or raisins)

Issue #6

Featuring: Marvin and Milo

Drop some peanuts into the glass.

The nuts float up to the top and fall back down again, like in a lava lamp.

Gas bubbles grow on the peanuts, making them float upwards. When they reach the top the bubbles burst and the peanuts fall back down again.

Groovy, baby.

www.physics.org keywords: buoyancy

© Institute of Physics 2013
Watch my amazing balloon trick!
Make a hole in the bottom of the bottle with the pen.
Push the balloon inside and stretch it over the mouth.

What you need:
- a clear plastic bottle
- a pen
- a balloon (blow it up a few times beforehand)

Blow up the balloon. Notice air is coming out of the hole.
Cover the hole with your finger and stop blowing.
As the balloon expanded, it pushed air out of the bottle. That made the air pressure inside the bottle lower than that in the balloon, so it wasn't strong enough to squeeze the air out.

Look! It stays inflated!

Vic Le Billon
What you need:
- a metal coat hanger
- two pieces of string
- a fork

Put your fingers in your ears and I’ll tap the hanger.

Watch me tune in to this coat hanger.

Tie a piece of string to each corner...

... and wrap the ends around your fingers.

It sounds louder because the vibrations travel through the metal and string more easily than through air.

Was it loud?

www.physics.org keywords: sound travel
MARVIN AND MILO

DO TRY THIS AT HOME

Issue #9

What you need:
- an Alka-Seltzer tablet
- an empty film canister
- an old newspaper
- water

Put the tablet in the film canister. Add about 1 cm of water.

I can make a brilliant rocket!

Put the lid on... lightly shake the canister.

Quickly place it upside down on the newspaper and stand back!

The Alka-Seltzer fizzes when in water, releasing gas.

This gas builds up in the canister until the pressure is too great, and the lid is forced off!

www.physics.org keywords: pressure
What you need:
- five wooden toothpicks
- a small sponge
- a plate
- a little water

DO TRY THIS AT HOME #10

Featuring:
Marvin and Milo

Carefully squeeze a drop of water into the middle.

Snap the toothpicks in half but don’t break them fully.

Arrange the toothpicks on the plate like this...

Did you see them move?

Just like synchronized swimmers!

The water makes the wood expand, the broken ends press against each other and the toothpick opens out. The same thing happens to doors when it’s humid - they swell up and get jammed.

Make sure it touches the end of each toothpick.

Vie Le Billon

www.physics.org
Push a lump of clay about the size of your fist on to the stick...

...20cm from the end.

With the clay-end closest to your hand, try balancing the stick.

It's much easier!

The stick rotates slower when the clay is at the top, so there's more time to adjust and keep it balanced.

The further the mass is from the centre of rotation (your hand), the slower it rotates.

Now turn the stick upside down and try balancing it again.

We Le Billon

www.physics.org keywords: "centre of mass"
Ahoy there me land lubbers! Today we are going to race my metal boat against Milo’s ship.

To make a boat like mine, cut this shape...

Water molecules are attracted to each other, creating “surface tension”. The soap disrupts the surface behind the boat but the molecules in front are still pulling together, so the boat is pulled forward.

What you need:
- piece of foil
- scissors
- washing-up liquid
- sink or bath

Gently place your boat into a sink full of clean water.

IT MOVES!

Carefully place a drop of washing-up liquid into the boat’s hole.

www.physics.org keywords: surface tension
Stretch the rubber band between your thumb and first finger.

Watch this!

The television picture is made up of tiny dots flashing on and off. It acts like a strobe light, freezing the band's vibrations at different positions so it looks like it's moving in slow motion.

What you need:
- a television (turned on)
- a rubber band

Holding the band between you and the television screen, pluck one side.
MARVIN AND MILO

DO TRY THIS AT HOME

#14

Featuring: Marvin and Milo

What you need:
- a plastic bottle
- some hot water

...then pour out the water...
...and put the lid on...

Put the bottle down and wait a few minutes.

The hot water gives the air energy - the pressure increases out (some leave the bottle). When the air cools, the pressure is lower than before because there are fewer molecules bouncing around. The air pushing on the outside of the bottle has more pressure, which crushes the bottle.

I can crush this bottle with no hands!

Very carefully pour a little hot water into the bottle, or ask a grown-up to help.

Shake the bottle...

www.physics.org keywords: air pressure

Vic Le Billon
Cut a spiral shape from the paper.

The radiator heats the air around it so the particles have more energy to spread out. This means the air is less dense and rises. The rising air pushes on the paper causing it to spin.

I can make a moving snake.

Hang your spiral above the radiator.

Make a hole in the centre and thread the cotton through.

What you need: • a sheet of paper • cotton thread • scissors
DO TRY THIS AT HOME

Let's see how high we can make these balls bounce.

Drop the tennis ball from waist height. See how high it goes.

#16

What you need: • a tennis ball • a basketball • a room without breakables!

Now watch the basketball.

Put the tennis ball on top of the basketball and drop them both at arm's length.

When the balls hit the ground, momentum from the basketball was transferred to the tennis ball making it go much higher than before.

Did you see how high that went?

MARVIN AND MILO

© Institute of Physics 2013

www.physics.org keyword: ball, momentum
DO TRY THIS AT HOME

FEATURING: MARVIN AND MILO

What you need:
- a glass of water
- a piece of paper
- a marker pen

This is my reversing machine.

Draw a column of short arrows.

Hold the paper a little way behind the glass.

The water acts like a glass lens, bending the rays of light and reversing the image of the arrows.

Stoopid Person

Vict Le Billon

www.physics.org keyword: lens
018

Marvin and Milo

Take another hole in the top flap...

Get an adult to poke a hole in the bottom left-hand corner of each face of the carton.

You can make your own garden sprinkler.

As the water shoots out it pushes back on the carton with an equal force. Because the holes are off-centre this force makes it spin around.

Lift the carton out by the string.

Put some water in the bowl, stand the carton in it, then fill it up to the top.

...and thread the string through it.

What you need: an empty juice carton, water, a pair of scissors, a washing-up bowl.

www.physics.org Keywords: water, Newton
Marvin and Milo:

DO TRY THIS AT HOME #19

What you need:
- A drinking straw
- A balloon
- A long piece of string
- A clothes peg
- Sticky tape
- A pair of scissors
- A peg

Blow up the balloon...

As the air rushes out it pushes back on the balloon, propelling it forward.

Now unclip the peg.

Tie the string across the room.

Thread the straw with the string...

... and then tape it lengthways to the balloon.

Look at my jet propelled rocket!

© Institute of Physics 2013
DO TRY THIS AT HOME

20

What you need:
- A plastic container
- A metal frying pan
- 2 identical ice cubes

Let's have a melting race.

Place the frying pan and container upside down next to each other.

Quickly put an ice cube on each.

I win!

Heat can flow through the metal to the ice cube, but the plastic doesn't allow it to flow so freely.
MARVIN AND MILO

DO TRY THIS AT HOME #21

Featuring: Marvin and Milo

What you need:
- a bendy straw
- water
- two small flat bowls
- food colouring

This bowl can drink on its own!

Fill the first bowl with water and a little food colouring.

Submerge the straw in water, making sure you get rid of any air bubbles.

Hold the straw with one end in each bowl.

The bowl with the higher water level has more stored (potential) energy, so water moves through the straw to the lower level.

Half fill the second bowl.

Tightly pinch the ends.

Release the ends when they’re under the water.

Vic Le Billon

[www.physics.org keywords: siphon]
I bet you can’t drink this using my special straws.

First try using two straws. One in the glass, and one outside the glass.

What you need:
- three straws
- glass of water or juice
- a drawing pin

Now try using this straw, which has a small hole 3 cm from the top.

What Milo doesn’t realise is that for the liquid to be forced up the straw, the pressure in your mouth needs to be lower than atmospheric pressure. So no matter how hard you suck, a straw won’t work if air can get into your mouth.
DO TRY THIS AT HOME

29

Featuring: Marvin and Milo

What you need: a jug, water, about 50 cm of string, a basin or sink

I've invented a non-drip jug!

Tie the string around the handle of the jug of water and pull it across the top of the jug and over the lip.

Hold the string tight at an angle, below the jug, and begin to pour.

Try creating an amazing route for the water by holding the string at different angles, even getting the water to turn corners as it goes down. But be careful, no sharp turns or the water falls off!

The water is attracted to the string and as the flow slows down, the water clings to the string. This is the Coanda Effect.

Vic Le Billon

www.physics.org keywords: coanda effect
Today we are going to make a water jet using this bottle.

What you need:
- some water
- small plastic drinks bottle
- a drawing pin

Watch me turn three jets into one!

Simply rub or ‘smear’ the three jets with your fingers.

Once the jets have been forced together, they stay together because of surface tension.

Fill the bottle with water and put the top on.

Use the drawing pin to make three small holes about 4mm apart at the bottom of the bottle and one near the neck.

Tip: Cover up the top hole to stop the water shooting out of the bottom three.

www.physics.org Keywords: surface tension
DO TRY THIS AT HOME

#25

What you need:
- some water
- a clear plastic watertight bag
- some pencils

Push a pencil through the bag.

Have you seen my Ingenious Indestructible Bag?

Fill the plastic bag with water.

The bag doesn’t burst because the plastic stretches rather than tears as the pencils are pushed through it.

Then another... and another.

If you take a pencil out, you can plug the leak simply by putting it back through the holes... MILO!

Vic Le Billon

www.physics.org keywords: plastic
DO TRY THIS AT HOME

#26

What you need:
- 2 apples with stalks
- 2 pieces of string about 30cm long
- Some sticky tape

Watch this! Tie a piece of string to the stalk of each apple.

Use the tape to hang up the two apples so that they are about 6cm apart and free to move around.

What do you think is going to happen if you blow hard between the apples?

The two apples move together!

Blowing reduces the air pressure between the apples, and the air pushing on the outer sides of them makes the apples move together, into the area of lower pressure.
I bet you can't make the paperclip move without touching it.

Put equal amounts of water in both glasses and stand them next to each other but not touching.

What you need:
- a paperclip
- water
- two identical wine glasses

Straighten out the paperclip, bend it slightly and then balance it on the rim of one of the glasses.

With a wet finger, rub the rim of the other glass until it "sings".

Rubbing the glass makes it vibrate at its natural frequency. As the other glass is identical, it has the same natural frequency, and the sound waves from the first glass make it vibrate as well – so the paperclip moves.

The paperclip moves!

www.physics.org keywords: resonance

Vic Le Billon
Hey Milo, let's do chicken impressions!

To do mine, make a hole in the bottom of the plastic cup. Get an adult to help.

Cut a length of string, thread it through the hole, and tie a knot in the end inside the cup to stop it from slipping back through the hole.

Take the damp cloth and hold it tightly around the string. Now pull the cloth firmly along the string to hear the cup cluck.

Pulling the cloth along the string makes it vibrate and produce a faint sound. But the cup and the air around it also vibrate so the sound is amplified enough for us to hear it.

What you need: • a plastic cup or yoghurt pot
• a damp cloth • smooth string

www.physics.org keywords: amplification
Today we are going deep sea diving with this ketchup sachet.

Put the ketchup sachet into a bowl of water to see if it floats upright — if not then add a little Blue Tac to its bottom.

What you need: 2 litre plastic bottle • Blue Tac • a bowl of water • a ketchup sachet

Fill a 2 litre bottle with water right to the very top.

Put the lid on tightly, squeeze the bottle hard and watch your diver dive.

Push your ketchup diver through the neck.

Squeezing the bottle squeezes everything inside it, including the air bubbles in the ketchup sachet. As the air molecules squash together, the sachet gets more dense than the water and it sinks. What happens when you stop squeezing?
DO TRY THIS AT HOME

What you need: two very similar sized books with at least 100 pages each.

Carefully, and evenly, interweave the pages of the books so that they overlap to about the middle of the page.

Hold the books by the spines and pull! The books don't separate, no matter how hard you pull, because of the friction between the pages.

Friction is the force that acts against the motion of two surfaces in contact. The friction between just two pages is tiny but with lots of pages in the books, the force becomes very noticeable!

I can join these two books together so well that you won't be able to pull them apart — and I won't use glue or staples or sticky tape.

My books are about the same size and have about the same number of pages.
Tip it slightly to one side and balance it so that the two parts of the bottom rim are touching the table.

Once the can is stable, give it a gentle push and it will pirouette!

For something to balance, its centre of mass has to be above its point of support. Water can flow which means that as the can pirouettes, the water moves and the centre of mass always stays above where the rim touches the table.
Do you want to see my homemade sunset?

Fill the glass about \(\frac{3}{4} \) full of water...

...add half a teaspoon of milk...

...and stir.

In a darkened room, shine the torch down onto the top of the water whilst looking through the side of the glass. Can you see the blue colour?

Then try shining the torch through the side of the glass whilst looking through the opposite side. What colours can you see now?

Finally, shine the torch up through the bottom of the glass and peer down through the water. What a lovely sunset!

The milk particles in the water scatter the light from the torch like dust and molecules in the atmosphere scatter light from the sun. The further the light has to travel through the water, the more of the blue light has been scattered, leaving only red light for you to see. Just like an sunset.

What you need:
- a large clear, straight-sided glass
- water
- milk
- teaspoon
- torch
- darkened room

www.physics.org keywords: sky blue
DO TRY THIS AT HOME

Marvin and Milo

What you need:
- uncooked rice
- a pencil
- a large empty jar with a narrow neck

Today I’m going to show you how to lift this jar up using just a pencil and some rice!

Fill the jar up to the brim with uncooked rice.

(Please make sure you have a jar which narrows towards the top.)

Push the pencil right into the rice.

Then, alternating between shallow and deep stabs, stab the rice repeatedly. It could take about 40 stabs, but you’ll start to feel the pencil gripping the rice.

When you feel a firm grip, carefully lift up the jar by the pencil.

As you push it in, the pencil forces the grains sideways, but they fall back into the gap as you pull it out. The rice becomes more and more tightly packed until the friction between the rice and the pencil is so great you can lift the jar.

Vic le Billon

www.physics.org *keywords: friction*
Take two empty plastic cups.
Put one inside the other.

I've got a great new party trick that will liven up this party.

The moving air gets in to the gap between the cups and forces the top cup up and out across the room.

If you blow softly, the inner cup rises up slowly. But if you blow hard...

Hold them quite close to your mouth and blow between the rims of the cups.

www.physics.org Keywords: air pressure

© Institute of Physics 2013

© Institute of Physics 2013

35
Nice outfit Milo, but don't you know that blue, purple and yellow are the new black?

Draw a dot in the centre of the kitchen towel with a felt tip pen, black works well but you could experiment with other colours.

Then add a few drops of water to the dot. As the water spreads through the tissue, the coloured pigments that make up the ink separate out.

The differently coloured pigments are made up of molecules of different sizes and this means that the water can carry them different distances across the paper.
DO TRY THIS AT HOME

*36

What you need: • A balloon
• An empty pop can (aluminium cans are best)

Watch me make this can roll across the table, with just a balloon!

Place the empty can on its side on a flat surface.

Then rub the balloon really fast against your hair.

Hold the balloon close to the can. It will start rolling towards the balloon.

Slowly move the balloon away from the can and watch in amazement as the can follows the balloon.

When you rub the balloon against your hair, negative electrons build up on the balloon. This negative charge induces a positive charge on the can making it roll towards the balloon.

www.physics.org keywords: static electricity

Vic Le Billon
Cut the tip off the party hat to make a hole about 2 cm in diameter.

Tests show that wearing a party hat makes you much worse at catching a ball.

When you're wearing the hat, you can only see with one eye at a time. Without your normal binocular vision, you can't judge distance as well and it's much harder to catch the ball.

Try to play catch with your friend using a soft ball.

What you need: • A cone shaped party hat • Scissors • A soft ball • A friend

Wear the hat over your face.
DO TRY THIS AT HOME

#39

What you need:
- Two polystyrene cups
- Two large elastic bands
- Sticky tape

Marvin and Milo

Chocs away Milo! It’s time to make these ordinary cups loop the loop!

Hold one end of the elastic where the cups join and wind it around a few times until the other end of the elastic is at the bottom and pointing away from you.

Hold the cups in one hand and stretch the elastic with the other. Fire the cups like a catapult. With a bit of practice the cups will soon be looping in the air.

The elastic makes the cups spin backwards as well as move forward through the air. This back spin creates lift, forcing the cups upwards. But air resistance soon slows the cups down and they fall towards the ground, completing the loop.

Tape the two polystyrene cups together at the base.

Then tie the two elastic bands together.

www.physics.org keywords: Magnus effect
What you need: • An egg • A glass of water
• An empty Smarties tube • A placemat

Roll up, roll up for the amazing daredevil eggstravaganza!

Put the placemat on top of the glass of water, shiny side down.

Stand the Smarties tube on the placemat directly over the glass...

...and balance the small pointy end of the egg on top of the tube.

Give the side of the placemat a short, sharp, horizontal whack.

And the egg falls into the glass!

The egg doesn’t go flying because the sideways force is only on the mat and the bottom of the tube, not the egg.
I hope you've got lots of puff Milky, you're going to demonstrate Newton's third law!

Insert the long end of the straw into the balloon...

... and tape it in place.

What you need:
- Pencil with a rubber on the end
- Drawing pin
- Drinking straw
- Sticky tape

Push the drawing pin through any part of the long end of the straw to attach it to the pencil's rubber.

Bend the short end.

Blow up the balloon using the straw, release, and watch it spin!

Try changing the position of the drawing pin and the angle of the short end to make it spin faster. The air rushes along the straw and around the bend. As the straw pushes on the air to force it round the corner, the air pushes back on the straw - making it move.

www.physics.org search term: Newton's third law
DO THIS AT HOME #42

What you need: A Malteser and a wine glass (narrower towards the top)

1. Put the Malteser on the table and place the glass over it.
2. Wiggle the glass quickly, giving it a circular motion, and the Malteser will climb the sides of the glass.
3. Keep the glass wiggling, lift the glass off the table, and the Malteser will stay inside!

```
I bet you can't lift the Malteser off the table without touching it!
```

```
The glass pushes inwards on the Malteser, forcing it to move in a circle rather than a straight line. The angle of the glass means that it also pushes upwards on the Malteser, supporting its weight.
```

MARVIN AND MILO

© Institute of Physics 2013
DO TRY THIS AT HOME

#49

What you need:
- 2 lolly sticks
- A wide elastic band
- 2 smaller, narrower elastic bands
- A straw
- Scissors

Featuring:
Marvin and Milo

I know what we can do with these lolly sticks!

Wrap the wide elastic band lengthwise around one of the sticks.

Cut two short pieces of straw and place them in between the stick and elastic band.

About 3cm from each end of the stick.

Place the other stick on top of the pieces of straw.

Hold the ends of both sticks together with the smaller elastic bands.

Then blow!

What happens if you move the straws closer together?

Blowing through the loud lollies makes the elastic band vibrate and create a sound. Moving the straws closer together shortens the section of the elastic band that can vibrate, raising the pitch of the sound produced.

www.physics.org search term: music sound
DO TRY THIS AT HOME

What you need: • An old (1) • Blu Tack • A sports cap
• A balloon

Blow up the balloon, and, making sure the sports cap is closed, pull the open end of the balloon over the cap.

Place your hovercraft on a flat surface and open the sports cap.

The air rushes out of the balloon and through the cap, lifting the craft up off the surface of the air. The air pressure in the balloon is less than the air pressure on the outside, so any surface tension is enough to lift the craft.
DO TRY THIS AT HOME

* #45

Featuring:

Marvin and Milo

What you need:

- A ramp or slope
- A lump of plasticine
- A round biscuit tin (or similar container)

* ... and put the lid on.

With the seam facing upwards but towards the top of the slope, put the tin on its side at the bottom of the slope and hold it in place.

Watch me defy gravity and make this biscuit tin roll up hill.

Let go and, ta da! The tin rolls up the slope.

The weight of the plasticine creates a turning force on the tin that levers it up the hill when you let go, and makes it look as though you’re defying gravity.

Attach a large-fist-sized lump of plasticine to the inside of the wall of the tin at the seam...

Vic Le Billon

www.physics.org search term: lever
Want to see how I can catch these keys with no hands?

Tie a bunch of keys to one end of the string and the paperclip to the other.

What you need:
- A bunch of about 3 keys
- A pencil
- A large paperclip or washer
- 1 m of string

How to do it:
1. Place the string over the pencil so that the keys hang down a couple of centimetres. Hold the paperclip horizontally out to the other side.
2. Let go of the paperclip.
3. The keys pull the paperclip towards the pencil, but gravity is also pulling it downwards so it moves in a circle. As the paperclip gets closer to the pencil, its angular velocity increases, and it wraps around the pencil.
4. It winds around the pencil and stops the keys hitting the floor!
DO TRY THIS AT HOME

47

What you need: A bowl, a glass, water, a tissue

Doing the Trick:

1. Fill the bowl with enough water to completely cover the glass.
2. Scrunch up the tissue and push it into the bottom of the glass.
3. Turn the glass upside down and submerge it in the water.
4. Pull the glass out and the tissue is ... Dry!
5. The air trapped inside the glass is at atmospheric pressure and this keeps the water out of the glass and away from the tissue.

Hey Milo, this trick will make your cold feel better. Check out my submarine!

[Image of Marvin and Milo comic strip]
DO TRY THIS AT HOME

Let's see which milk will make better froth for my cappuccino!

Fill one glass about five centimetres deep with whole milk and pour the same amount of skimmed milk into the other glass.

What you need:
- Two glasses
- Skimmed milk
- Whole milk
- Two straws
- A friend

Both starting at the same time, blow through the straws and into the milk.

The skimmed milk froths up much faster than the whole milk, and the bubbles last longer too.

Bubbles can form in milk because the milk proteins form a strong skin. But the fat in whole milk interacts with these proteins, weakening this skin and popping the bubbles.

www.physics.org search term: bubbles
DO THIS AT HOME

Fab deely boppers Milo, but try out my Head Hanger.

Straighten out the clothes hanger...

... and then bend it into an 'M' shape with long 'legs'.

What you need:
- A metal clothes hanger
- Plasticine
- (An adult to help)

Make two equal-sized Plasticine balls...

... and stick them on to the legs of the 'M'.

Balance the hanger on your head with the Plasticine balls well away from your ears. This may take some practice.

As you turn, the hanger remains almost stationary! The friction between your head and the wire is very low so the hanger doesn't move with you.

Spin round quickly.*

* Be careful of the ends of the hanger and your face.

Vic Le Billon

[www.physics.org search term: inertia]
DO TRY THIS AT HOME

What you need:
- A dark room
- An envelope
- Roll of sticky tape
- A Polo mint or similar sugary sweet
- A friend or mirror

Milo: Milo, you’re going to love this one! I can make these everyday objects glow.

Wait about five minutes in a dark room so that your eyes become dark adapted and you can make out some objects.

Rip open the seal of the envelope — you will see a blueish glow.

Try crunching a sweet with your mouth open or ripping a piece of sticky tape off the roll.

Cracking sugar or ripping apart glued surfaces separates positive and negative electrical charges. When they recombine the surrounding air is excited, producing a flash of blueish light.

www.physics.org search term: triboluminescence
DO TRY THIS AT HOME

What you need:
- A plastic cup
- A pair of scissors
- Some water

Cover the hole with your finger and fill the cup with water. Make sure you’re somewhere that can get wet.

Ask an adult to help with this.

This is a great trick to do at a picnic! Milo. Do you think I can get water to stay in a cup with a hole in it?

The water stays inside the cup despite the huge hole! The cup and the water are falling at the same rate due to gravity, so they hit the ground at the same time.

Try it and see what happens with a hole of your finger can cover it.

Cut a hole in the bottom of the plastic cup about 1cm in diameter, making sure that your finger can cover it.
Ker-Plunk!

A vortex of air is pushed out of the bottle by the balloon, lifting everything it passes. How far will your vortex travel?

Hey Milo, check out my bottle blaster!

Take aim of your target, pull back the centre of the balloon, hold the bottle steady and release the balloon.

Don’t pull it tight. Tape the balloon in place around the bottle.

Mighty Marvin and Milo

Carefully cut the bottom of the bottle off.

What you need:
- An empty plastic bottle
- A balloon
- A pair of scissors
- Sticky tape

Cut the neck off the balloon.

Ask an adult to help.

Do TRY THIS AT HOME
MARVIN AND MILO

DO NOT TRY THIS AT HOME

What you need:
- A piece of polystyrene
- Drawing pin
- Clean foil quiche tin
- Pencil with a rubber end
- Woollen glove

Features:
- Marvin and Milo

Hey Milo, here's a chance to show what a bright spark you are.

Rub the polystyrene quickly with the glove.

Using the pencil handle, put the foil tin on top of the polystyrene. Don't touch the foil or the polystyrene.

Bring an outstretched finger close to the tin and you'll hear, feel and maybe even see a tiny spark!

Rubbing the polystyrene makes it negatively charged. This excess charge repels the electrons in the foil. Your finger provides an escape route for the electrons in the foil and as they jump the gap you get a small electric shock.

Push the drawing pin through the centre of the foil tin and push the rubber end of the pencil on to it to form a handle.

Vic Le Billon

www.physics.org search term: lightning
DO TRY THIS AT HOME

#54

Featuring: Marvin and Milo

What you need:
- A buzzing egg timer
- Sticky tape
- A piece of string about 1 metre long
- A friend

Tie the piece of string to the egg timer securely, using some sticky tape as well if needed.

With the timer buzzing, hold the other end of the string very tightly and start to swing it in a circle around your head. Make sure your friend is standing well back and there’s nothing breakable near you.

Your friend will hear the pitch of the egg timer change as it moves around your head — but you won’t hear any change at all!

As the egg timer circles towards your friend, the sound waves bunch up closer together and the pitch of the sound gets higher. As it circles away, the sound waves spread out and the pitch becomes lower. Your position relative to the egg timer is always the same so you don’t hear any difference.

www.physics.org search term: Doppler effect

Vic Le Billon
DO TRY THIS AT HOME

What you need:
- Bouncy ball or ball of Plasticine
- Piece of paper
- Sticky tape
- Scissors

Marvin and Milo

I know a good way to stop your balls rolling off all over the place, Milo.

Cut the bouncy ball in half. (Get an adult to help.)

Roll the paper into a column around the top of the ball and hold it in place with sticky tape.

If you flick the column of paper, it will fall over. Cut off bits of paper until when you flick it, it rights itself again.

The wobbler is now self-righting because its centre of mass is lower. As the wobbler leans over, its centre of mass rises but gravity pulls the wobbler back upright before it can topple over.

Vic Le Bilbon

www.physics.org search term: centre of mass
DO TRY THIS AT HOME

Party balloon

Energy saving light bulb

What you need:

What to do:

1. Rub the balloon against your hair or jumper.
2. In a dark room, hold the bulb in one hand and move the balloon back and forth close to it.
3. Waving the electrically charged balloon close to the bulb causes a current to flow through the charged gas inside the bulb and it lights.

Tips:

- **Milo:** Don’t worry about the power cut, I can produce some light for you!
- **Milo:** Blow up the balloon and tie the end.

Search term: static electricity
Fill both glasses about 1/3 full with hot water.

Hold the top glass in place for about 20 seconds, then use the top glass to pick up both glasses. The heated water heats up the air inside the glasses, which expands and some escapes. With the two glasses held together, the air pressure outside the glasses is higher than inside, so the glasses are pushed together.

Do you want to try this at home? Here’s what you’ll need:

- Two plastic glasses
- Paper towel
- Hot water
- Sink
- Adult help

Carefully swirl the water around one of the glasses and pour as much as you can down the sink. Then, mind out to splash yourself.
DO TRY THIS AT HOME #58

What you need:
- Raw egg
- Large pop bottle
- Salt
- Scissors
- Sticky tape
- Water

Fill the bottle with enough water so that the egg is well covered.

Add salt to the water, stirring, until the egg floats.

Tape the top of the bottle back on.

Drop the bottle to the floor from waist height.

The egg doesn’t break because the salt water spreads the impact across the whole egg. Try dropping the egg in the bottle without the salt water.

Watch me drop this egg without it smashing!

Cut the top off the bottle and put the egg inside.

[Source: www.physics.org search term: impact]
Pour the vegetable oil into the saucer. So it's about 0.5 cm deep and sprinkle the dill liberally over it.

Rubbing the balloon makes it negatively charged and this induces a positive charge in the dill. The attraction between the balloon and dill can be large enough to overcome gravity.

While you're cooking my tea, I'll put this herb to good use.

Rub the inflated balloon against your hair or jumper.

What you need:
- A saucer
- Vegetable oil
- Dried dill
- Balloon

DO TRY THIS AT HOME

059

MARVIN AND MILO

© Institute of Physics 2013
MARVIN AND MILO

DO TRY THIS AT HOME

#60

Milo, here's your chance to see a "real" UFO!

Tie six strands of tinsel together with a knot at each end...

...and cut any loose ends off close to the knot.

What you need:
- Balloon
- Very thin strands of tinsel, about 15cm long

Rub the inflated balloon against your hair or jumper...

...and hold the tinsel above the balloon by one of the knots.

Drop the tinsel. The tinsel will touch the balloon, be repelled and start floating!
Use the balloon to direct where it goes.

Rubbing the balloon makes it negatively charged and the tinsel is attracted to it. When the tinsel hits the balloon, it picks up some of the negative charge and is repelled away.

(If your UFO won't fly, try again with thinner tinsel or on a very dry day.)

Vic Le Billon

www.physics.org search term: static
Hey Milo, I bet you can't make this straw spin without touching it!

Place the plastic bottle cap on a table. Rub the straw with a jumper several times in the same direction...

What you need: • A drinking straw
• Plastic bottle cap • A jumper • Your hands

...and then carefully balance the straw on the cap. Bring one hand close to the straw, but don’t touch it.

The straw will start to spin! Experiment with where to put your hand to get the best response. Does one end of the straw respond better than the other? Does using two hands rather than one make a difference?

Rubbing the straw makes it negatively charged and this induces a positive charge in your hand. The attraction between the straw and your hand makes the straw follow your hand as you move it.

www.physics.org search term: static
Fill one glass with tonic water...

...and the other with tap water...

Tonics water contains quinine. The quinine absorbs ultraviolet light from the Sun and re-emits it as visible blue light.

Making the dark paper behind the bottle blocking the light, look across the surfaces of the water. The tonic water will go bluish blue/gold.

Hey Milo, I’ve got a cool trick for a sunny day!

Do this at home:

What you need:
- Two clear glasses
- Tap water
- Tonic water
- Dark paper
- Sunlight

...and put them both in direct sunlight.
#63

DO THIS AT HOME

What you need:
- Freezer
- Bottled or distilled water (not tap water)

What to do:
Check this out Milo - I can make this bottle of water freeze just by tapping it!

Put the bottle of water in to the freezer.

While the water is still liquid, take the bottle out of the freezer carefully, then tap it suddenly on the edge of a table. The water will freeze!

Water can stay liquid for several degrees below 0°C if there are no impurities or disturbances to start ice crystals forming. Tapping the bottle disturbs the “supercooled” water and kicks off freezing.

Leave it alone for two to three hours. You'll need to experiment with the exact timing as all freezers are different. Check regularly that the water is still liquid - but don’t move the bottle!

www.physics.org search term: supercooling
DO TRY THIS AT HOME

What you need:
- Shallow bowl
- Milk
- Food colouring
- Washing-up liquid
- A couple of drops of food colouring around the edge of the bowl.

What to do:
1. Pour a couple of centimetres of milk into the bowl.
2. Add a couple of centimetres of washing-up liquid. What happens?
3. The washing-up liquid reduces the surface tension of the milk, causing soap and eddies in the liquid. What happens if you use skimmed milk?
4. Add a drop of washing-up liquid to the centre of the bowl and mix. What happens?
5. Add a drop of washing-up liquid to the centre of the bowl and watch the colours start to mix and churn.

Do try this at home.

© Institute of Physics 2013
MARVIN AND MILO

DO TRY THIS AT HOME

#65

What you need:
- A penny or other small coin
- Empty bottle with narrow neck
- Some water
- A freezer

... and quickly put the coin over the mouth, making sure there are no air gaps.

Put the bottle back in the freezer for another hour.

Wow, Milo, did you see that?

Take the bottle out of the freezer and, using a cloth, grasp the bottle with both hands*. Wait.

*Make sure the bottle is pointing away from you and anything breakable!

Put the clean, empty bottle in the freezer for about an hour, or until it’s really cold.

Take the bottle out of the freezer. Wet the mouth of the bottle...

Your hands warm the cold air inside the bottle, making it expand and force the coin off the bottle and into the air.

www.physics.org search term: air
Cut out a small piece of clear plastic (about 5cm by 3cm) and put sticky tape around the edges if they are sharp.

Don’t worry about finding your glasses! Milo, you can use my mini-magnifier!

The water drop acts as a magnifying lens. Light from the page travelling through the drop is bent (refracted) making the text look much bigger.

Place the plastic carefully over some text and look straight down through the top of the drop — the text will look bigger!

Use a teaspoon to put a single small drop of water onto the middle of the plastic.

What you need: Sticky tape • Water • Teaspoon • Clear plastic, e.g., from a pop bottle.

Try this at home!
MARVIN AND MILO

DO TRY THIS AT HOME

#67

What you need:
- Sticky tape
- Marshmallows
- Piece of thin card ("A4 size")

Hey Milo, I bet I can get my marshmallow to fly further than yours!

Roll the piece of card lengthways into a tube that is just wide enough to be a snug fit for a marshmallow. Put tape along the whole length of the tube to hold it together and seal the join.

Put a marshmallow in one end of the tube, hold the tube horizontal, and blow from the opposite end.* Note how far it flies.

Try again with a new marshmallow but this time blow from the end with the marshmallow. Keep blowing until the marshmallow leaves the tube.

By blowing as the marshmallow travels along the whole length of the tube, you’re applying a force for longer. This means the marshmallow accelerates for longer, emerges from the tube at a greater speed and flies further.

* If the marshmallow doesn’t move, adjust the diameter of the tube.

www.physics.org search term: Newton’s second law
DO TRY THIS AT HOME

#68

Featuring: Marvin and Milo

What you need:
- White carnation or similar
- Vase
- Water
- Food colouring
- Scissors

Cut the end of the stem and place the flower in the coloured water.

With another flower, try cutting carefully halfway up the middle of the stem and putting each half in differently coloured water.

Leave over night.

Pour water into the vase...

... and add a capful or two of food colouring.

Capillary action forces the water up through the stem and into the petals. The food colouring shows the paths the water takes.

I know how to jazz up those blooms, Milo!

Search term: capillary action
DO TRY THIS AT HOME

#69

Featuring: Marvin and Milo

What you need:
- A small mirror
- A blank wall
- A friend

Hey Milo, I can make you disappear!

Sit opposite your friend and next to a pale, blank wall.

With the wall to your right, hold the mirror in your left hand and put it next to your nose.

Angle the mirror so that your right eye sees only a reflection of the wall.

Watch bits of your friend’s face disappear! Don’t give up if it doesn’t work straight away – try switching eyes, holding your head very still and making sure your friend doesn’t fidget.

Each eye is seeing something very different and as your brain tries to make a sensible single image, it combines bits from both eyes. But your brain is sensitive to movement so it focuses on your moving hand and your friend disappears.

Search terms: binocular vision
DO TRY THIS AT HOME

#70

Featuring: Marvin and Milo

What you need:
- A teacup or mug
- A teaspoon
- Good ears

That’s strange, did you hear that Milo?

If you tap the rim of the teacup by the handle, opposite the handle or at the two points half way round the rim, then you hear a low pitched sound.

But if you tap the rim of the teacup halfway between those points, you hear a sound that is higher in pitch.

Tapping the rim causes vibrations around the cup, but at the handle the movement is always at a minimum.

So tapping at the specific points on the rim sets up vibrations with different wavelengths and you hear notes of different pitches, or frequencies.

www.physics.org
search term: sound waves
Hey Milo, don’t just lie there, take a look at this!

Stand with your back to the Sun and turn on the hosepipe. Put your thumb over the end of the hose to get a fine spray of water.

What you need: *A hosepipe* • *a garden* • *a sunny day*

Look at the spray against a dark background such as a wall, hedge or grass.

White light from the Sun is made up of light of different wavelengths, or colours. The different wavelengths of light are bent by different amounts as they pass through the water, splitting the white light into all the colours of the rainbow.

Adjust your position and the fineness of the spray until you see a rainbow!

www.physics.org
search term: rainbow
MARVIN AND MILO

DO TRY THIS AT HOME

Phew Milo, now we've signed all those copies of our NEW BOOK, we can get back to experimenting.

Take a copy of our NEW BOOK and a piece of paper, smaller than the book. Hold them horizontally and drop them both at the same time. Notice which one hits the ground first.

What you need:
- A piece of paper smaller than the book
- A copy of Marvin and Milo's Adventures in Science*
 *Available NOW from all good bookshops and online retailers

Now put the piece of paper flat against the bottom side of the book and drop them together. What happens?

Drop them again, but this time with the paper on top of the book. What happens?

Air resistance means that when dropped separately, the book and paper hit the ground at different times. But when they are dropped together, the larger book sweeps the air out of the way and the two fall at the same rate.

www.physics.org search term: air resistance

WINNER
Dog Booker Prize £50,000
DO TRY THIS AT HOME

What you need:
- Two glass bottles
- A wooden spoon
- A jug of water
- Good ears

1. Tap both bottles and listen to the sound they make. Which one is higher pitched?
2. Now blow across the top of each bottle. Which bottle makes the higher pitched sound now?
3. Fill one bottle $\frac{1}{4}$ full of water...
4. ...and the other $\frac{1}{4}$ full of water.

This is much more fun than sorting out the recycling, Milo!

The easier it is for the glass to vibrate when you tap it, the higher the frequency. So the bottle with less water in will sound higher pitched.

The less air there is in the bottle when you blow over it, the faster it vibrates. So the bottle with more water in will sound higher pitched.

www.physics.org
search term: vibrations
Hey Milo - do you trust physics to make this sieve waterproof?

Fill the bottle with water...

The water stays in the bottle! The surface tension of the water across the fine mesh of the sieve stops the water flowing through the holes.

Turn them both upside down, making sure that the top of the bottle is in contact with the sieve at all times.*

* It's best to do this over the sink or outside...

What you need:
- A glass bottle
- A sieve
- Water

...and hold the sieve over the top of it...

DO TRY THIS AT HOME
Pour about 2cm of water into the bottle.

Before you take that tablet, Milo, I have an experiment which will make you feel better!

Blow across the top carefully so the sound is muffled.

You can hear a lowerpitched note because sound travels more slowly through carbon dioxide than through air.

Blow across the top of the bottle again and listen to the sound it makes now.

Break the tablet in two and put both halves into the bottle.

What you need:
- A small glass bottle
- Water
- An effervescent indigestion tablet

In home

Vic Le Billon
Thanks for pouring me a drink Milo, but let me show you how to pour light.

Wrap the bottle in kitchen foil, leaving the bottom bare.

Almost all the light from the torch is reflected every time it hits the edge of the stream of water, so the light follows the path of the water and you see a spot of light where the water hits the sink.

Shine the torch through the bottom of the bottle and start pouring the water into the sink. Keep the torch close to the bottle at all times.

and turn off the lights.

What you need: A clear plastic bottle, A torch, sticky tape, a dark room with a sink, kitchen foil.

Fill the bottle with water, ...
MARVIN AND MILO

DO TRY THIS AT HOME

77

What you need:
- Two flat, rectangular fridge magnets
 - If you only have circular magnets, you’ll need to do some experimenting to feel this effect!

That’s a great collection Milo. Can I borrow two?

Place the magnets side by side on a table: one face up and one face down.

Try sliding them apart again, but this time along the shortest side. How well do the magnets slide now?

Put one magnet on top of the other so that the two magnetic sides are touching. Try to slide them apart along the longest side. How easily do they slide?

Fridge magnets are made from thin strips of magnets with alternating north and south poles. As you try to slide the magnets across each other, the thin strips are being attracted and then repelled, making the magnets judder.

www.physics.org
search term: magnets

© Institute of Physics 2013
MARVIN AND MILO

DO TRY THIS AT HOME

What you need:
- An adult
- Two balloons
- Some water
- A tea light
- Matches

Only do this experiment with a responsible adult and only hold the balloon over the flame for a short time.

Featuring: Marvin and Milo

That was a great party Milo! I know what we can do with these spare balloons.

Add some water to the second balloon...

...and then blow it up. What happens when you hold this balloon over the flame?

It doesn’t pop as the heat from the candle is transferred to the water. Water takes a long time to heat up, so it stays relatively cool and stops the rubber from getting so hot that it bursts.

Place the tea light on a flat surface and light it. **Make sure it is away from anything flammable or electrical.**

www.physics.org search term: **specific heat capacity**
Bend the hook so that it points towards the newly-formed corner...

...and file the end flat.

With the coat hanger on one finger, balance the coin on the hook. This might take some patience!

Once the coin is in place, start swinging the hanger back and forth. Can you get the hanger to swing in a complete circle without the coin falling off?

Hey Milo, take a break from the ironing and have a go at this!

Carefully pull the coat hanger out of shape until it forms a square.

The circular motion of the hanger means that a centripetal force acts to keep the coin firmly in place while you’re...

...swinging.

What you need:
- A metal coat hanger
- A pound coin
- A file

www.physics.org
search term: Centripetal force
DO TRY THIS AT HOME

#80

Featuring: Marvin and Milo

What you need: • A plastic drinks bottle • Water

Hey Milo, do you want to see how bubbles act in space?

Fill the bottle with water so it is very nearly full.

Put the lid on tightly...

...and throw the bottle in the air.

When the bottle is in free fall, surface tension forces the air into a bubble with the least possible surface area – a sphere. In space, the same effect can be seen with liquid drops in air.

Watch it carefully on the way up and down. The air inside the bottle will form a spherical bubble as it’s falling!

www.physics.org search term: free fall
Yum, delicious Milo but this kebab can demonstrate Newton’s First Law. Now, first eat the kebab....

push the skewer through the centre of the apple until it is sticking out by about 5 cm.

Ask an adult to help with the skewering

Holding the skewer horizontal, hit the blunt end with the hammer. What happens?

Holding the skewer vertically, what happens this time when you hit the skewer?

In both cases, the skewer moves further through the apple each time you hit it because of the apple’s inertia.

www.physics.org search term: inertia
Phew Milo, I needed that drink in this heat but before you recycle that bottle let me show you an experiment.

Fill one bottle with cold water.

Fill the other with hot water from the tap.

Add some red food colouring to the hot water.

Hold the card firmly over the top of the cold water bottle, turn it upside down and balance it on top of the hot water bottle.

Align the bottles and carefully remove the card. Do this in the sink just in case!

Hot water is less dense than cold water so it rises into the top bottle while the cold water sinks into the bottom bottle. This convection continues until the water is the same temperature throughout both bottles.

What you need: • Two plastic drinks bottles • Cold water • Hot water • Sink • Piece of card • Red food colouring

www.physics.org search term: convection
MARVIN AND MILO

DO TRY THIS AT HOME

What you need:
- Coin
- Mug
- Blu Tack

Steps:
1. Stick the coin to the bottom of the empty mug.
2. Fill the mug with water.
3. While you stay in position, get your friend to slowly pour water into the mug... until you can no longer see the coin in the mug.
4. Step back or move your head...

Why it works:
The coin appears to disappear because the water bends, or refracts, the light travelling from the coin so that it can now reach your eye.
Do you pass the pepper, Milo?

Rubbing the balloon makes it negatively charged and both the salt and pepper are attracted to it. However, the pepper grains are lighter than the salt, so it is the pepper that leaps towards the balloon.

Try this at home: What you need: Ground pepper, Ground salt, Balloon. Rub the balloon on your hand or a jumper...
DO TRY THIS AT HOME

#86

What you need:
- A large Pyrex® bowl
- A small Pyrex® bowl
- Vegetable oil

Hey Milo, I can help you with the washing up by making this bowl disappear!

Pour enough vegetable oil into the large Pyrex® bowl so you'll be able to completely submerge the small bowl in it.

Carefully lower the small bowl into the vegetable oil.

The small bowl disappears as it gets covered in oil!

The refractive index of Pyrex® glass is the same as that for vegetable oil, so as light passes through the glass of both bowls and the oil it doesn’t bend — refract — at all and you can’t see the small bowl.

www.physics.org search term: refractive index