Inertial Confinement Fusion

DR KATE LANCASTER
YORK PLASMA INSTITUTE
In the late fifties, alternative applications of nuclear explosions were being considered – the number one suggestion was fusion energy generation.

Thoughts turned towards how to miniaturise fusion explosions, and what primary driver would replace fission.
In the beginning...

Once lasers had been realised, it was blindingly obvious that they were the perfect driver for ICF.

ICF for fusion energy wasn’t taken seriously at LLNL, but since indirectly driven implosions had overlap with the weapons program, a laser program could be pursued in earnest in the 70’s.

1976 - first indirect drive laser implosion experiments on single beam 100J 1.06μm Cyclops (Nd-glass) laser at Livermore.
How it works

A capsule made of deuterium and tritium is imploded by laser or x-ray drive.

Lasers or X-rays symmetrically irradiate pellet.

Hot plasma expands into vacuum causing shell to implode with high velocity.

Material is compressed to ~1000 gcm$^{-3}$.

Hot ignition region formed at the centre of the fuel by piston-like action of imploding shell.

Implosion results in compression, heating and finally thermonuclear ignition + burn.
Direct vs indirect drive
Ignition and gain

Goal of fusion is to produce energy!

These systems, whether ICF or MCF, are lossy.
We must produce enough energy through fusion to overcome these losses.

Ignition: point at which fusion is self-sustaining.
In ICF: this is the self-sustaining fusion burn wave.

To get ignition and gain (net energy out) we must overcome losses in ICF:

\[P_w + P_\alpha - P_e - P_b > 0 \]

The Lawson criterion for magnetic confinement is \(n\tau > 10^{20} \text{ m}^{-3} \text{ s} \)

The equivalent condition for ICF is \(\rho R > 3\text{gcm}^{-2} \)
Gain requirements for a reactor

\[E_d = \eta_d E_{in} \quad \text{Driver (efficiency \(\eta_d \))} \]

\[E_{fus} = GE_d \quad \text{Target (Gain G)} \]

\[E_{in} = f\eta_{th} GE_d \quad \text{Thermal cycle (efficiency \(\eta_{th} \))} \]

\[\eta_{th} GE_d \]

\[E_{grid} = (1-f)\eta_{th} GE_d \quad \text{Energy to grid} \]

For balance: \(f\eta_{th} \eta_d G = 1 \)
Assuming \(\eta_{th} = 40\% \), and \(f < \frac{1}{4} \)
\(G \eta_d > 10 \)
So \(G = 30-100 \) (for driver efficiencies of 10-33\%)
Why compress the fuel?

If you release more than a few GJ of energy the “mirco-explosion” will damage the reactor vessel. 1GJ is equivalent to energy release of 250 kg of high explosives!

Fuel restricted to 10’s mg in order to obey this limit

To burn these small masses, fuel must be compressed to more than 1000 x solid density to satisfy ρR condition of 3 g/cm2
Hot spot ignition

Uniformly heating compressed DT fuel to 5 keV does not give enough gain – only 20.
As we have seen before we need gain of 30-100 for ICF to work.

Instead we must heat a small volume of the fuel which we call the hot spot. This fuel self heats via fusion reactions and then a burn wave propagates out into the cold fuel. The hot spot ρR must be sufficient that a large fraction of the α-particles deposit their energy within the hotspot.

Hot spot ρR > 0.2 – 0.5 g/cm²
Numbers

Ablation velocity: $\sim 10^7$ cm/s

Implosion velocity: $\sim 10^7$ cm/s

Ablation pressure: 100s Mbar

Peak pressure: 100s Gbar (pressure amplification due to spherical convergence)

Energy for ignition: \simMJs
Targets

33 µm CH
157 µm DT
DT gas

1630 µm

Ignition Point Design

Laser beams
in 2 rings

9/1 mm

Capsule
(Be)

5.1 mm

Hohlraum wall:
- High-z mixture (cocktail)

1 mm

Ablator
(Be)

Hohlraum fill:
- Low pressure He

Laser entrance hole (LEH) with window

DT Ice
DT gas fill
Problems for ICF: Rayleigh-Taylor Instability

RT instability can have a number of unfortunate effects including mixing of hot and cold fuel, non-spherical hot spots, contamination of fuel with non-DT.

Reduce problem of RT by:
Ensuring extremely uniform capsule illumination and very smooth capsule surface.

Growth can be stabilised somewhat by increasing ablation velocity -> unstable fluid ejected into exhaust before it can get too unstable.
Parametric Instabilities

When intense lasers are absorbed in materials, energetic electrons tend to be created via a variety of mechanisms.

These electrons tend to penetrate through the ablator and preheat the fuel, making it more difficult to compress.

This problem affects both direct and indirect drive ICF.

These problems are solved by going to shorter laser wavelengths (ultra violet) where energetic electron production occurs less.
Global ICF facilities

- NIF
- ORION
- OMEGA EP
- Laser Megajoule (LMJ)
- LFEX
- Shenguang - III
The National Ignition Facility

Spec:
\[\lambda = 0.35 \text{mm} \]
Total energy (to target) = 2 MJ
Pulse length = 20 ns
Number of beams = 192
Beam configuration = polar
Scheme = Indirect drive

Biggest laser system ever built

Has been operating since 2008 – ignition campaign began 2010

Produced record breaking numbers of neutrons and alpha particle heating
What was NIC for?

Obviously the desired outcome was ignition! NIC, which ran from 2006 (prior to laser completion in 2009) through to Sep 2012 also had other objectives:

• Operation and optimisation of NIF
• Fielding of over 50 optical, x-ray, and nuclear diagnostics
• Target fabrication

The campaign achieved 37 cryogenic shots and whilst ignition has not yet been achieved, they have massed a huge body of scientific knowledge about large scale indirect drive implosion experiments
My friends are clever
Where are we at?

1.0-1.6 mg/cm3
gas fill
Low LPI
Higher coupling, and
less time-dependent
CBET
More predictable

0-0.6 mg/cm3
gas-fill

Images courtesy P. Patel, LLNL

S. MacLaren, J. Salmonson, T. Ma, S. Khan et al.
IFE power plant
Technological challenges

Challenges that need addressing for IFE:

• High-repetition rate, high-energy lasers
• High repetition rate diagnostics
• Reactor wall technology
• Cryogenic target micro-fabrication – mass production
• Target injection systems
• Materials appropriate for extreme conditions
• Lasers in “dirty” environment

Plus common challenges with MCF – tritium breeding and inventory, energy extraction, neutronics...
New lasers for IFE

Current lasers (NIF, LMJ) based on Nd:Glass laser technology.

Nd:glass rods pumped by flash lamps low repetition rate (~once per hour). Only ~1% efficient.

Ideally need driver efficiencies of 10-20% for high gain and 10Hz rep rate.

Options:
Diode Pumped Solid State lasers (DPSSLs)
Krypton Fluoride lasers (KrF)
Thank you!