3D Printing in Healthcare: from Concept to Clinical Practice

Dr Scott Inglis
Medical Physics
NHS Lothian
scottinglis@nhs.net

Up and Coming Techniques in Medical Physics
Translated into Clinical Practice

07/12/2015

3D Printing

What will be covered

• What is subtractive and additive manufacturing?
• Problems faced in the NHS
• Potential impact within NHS
• 3D printing process
• 3D printing technology
• Individual printers vs Hub facility vs External Service
• Applications in Healthcare
• Research & Future applications
• Conclusions
What is Subtractive and Additive Manufacturing?

Subtractive manufacturing
- Performed using CNC machines
- Works by removing material
- Can work from large range of materials
- Cannot do hollow or very complex objects.

Additive manufacturing
- Can be performed by 3D printers
- Works by building up an object layer by layer
- Has a limited range of materials
- Some printers can produce an object manufactured in multiple materials.
- Can produce complex and hollow objects.

Problems being faced in NHS

MONEY!!!
- How can you get funding?
- How can you use and prove that 3D printing will enhance your clinical practice?
- Do you use external or internal 3D printing facilities. Is it cost effective?

E-Health or IT
- It’s a printer!!!!!

Healthcare Science
- Recruitment of skilled mechanical engineers. Is it a dying art?
- Changes in legislation regarding in-house manufacture.
- What is a Medical Device?
- Where does 3D printing sit?
- How can we manufacture items within MDD?
Potential Impact of 3D Printing in Healthcare

- Improved efficiency of patient pathway
- Cost savings
- Improved accuracy and safety of procedures and service delivery.
- Achieved by
 - Reducing theatre time
 - Reducing need for repeat procedures
 - Customising solutions to patient’s needs
 - Patients are better informed

Where are we going?

CT

3D printed objects

Surface & Volume Rendering

(DICOM dataset used for the CT image and surface render were obtained from Osirix website sample datasets. http://www.osirix-viewer.com/datasets/)
3D Printing Process

Data Source
- Tomographic Imaging Modality
- CAD / CAM
- 3D Scanner

3D Reconstruction and Modelling
- 3D Modelling, Manipulation of Data & Procedure Planning

3D Printing
- 3D Model Printing, Preparation & Printing

Model Completion
- Finished product

3D printer choice?
Consider the following when choosing the printer and technology

- **Available budget?**
- **Size of objects to be printed?**
- **For the finished product**
 - What will it be used for?
 - Where will it be used?
 - Require sterilisation, strength, flexibility?
 - What type of material and will it require multiple materials?
 - Rigid, flexible, biocompatible, metallic, polymers, wax ceramic etc.
 - Does the model require to be completely solid, honeycomb build, or hollow?
Individual printers vs Hub facility vs External Service

<table>
<thead>
<tr>
<th></th>
<th>Individual Printer</th>
<th>Internal Hub</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup Cost</td>
<td>Low (printer cost)</td>
<td>High (but could be used for income generation to other NHS boards)</td>
<td>N/A</td>
</tr>
<tr>
<td>Printer quality</td>
<td>Low</td>
<td>Better / Best</td>
<td>Best</td>
</tr>
<tr>
<td>Model Expense</td>
<td>Low (Cost of materials)</td>
<td>Low to Mid (Cost of materials + ? proportion of staff)</td>
<td>High (3 to 15 times cost of materials)</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Low (only used by one service)</td>
<td>High (used by multiple services, multiple print jobs & easy prioritisation)</td>
<td>High (multiple paying users, multiple print jobs possible & prioritisation at a price)</td>
</tr>
<tr>
<td>Idle time</td>
<td>Mid to High (depending on internal demand)</td>
<td>Low (used by multiple services, & possible external parties)</td>
<td>N/A (multiple paying users)</td>
</tr>
<tr>
<td>Wastage</td>
<td>Low to Mid (Can see wasted materials if bought in bulk)</td>
<td>Low</td>
<td>N/A (Can incur additional cost for changing materials)</td>
</tr>
<tr>
<td>Skill & Knowledge</td>
<td>Mid</td>
<td>High (Specialised)</td>
<td>High (General)</td>
</tr>
</tbody>
</table>

3D Application within Healthcare

- Pre-Surgical planning.
 - Pre-assessment of trauma.
 - 3D modelling of procedure and printing of bone graft templates.
 - Reconstructive surgery cutting guides.
 - Customisation and forming of implants on prints.

- Physician to physician communication.
 - especially in Multi Disciplinary Team environment

- Physician to patient procedure explanation.

- Medical student / junior doctor education.
Maxillofacial surgery

- Currently used extensively by Maxillofacial surgery in NHS Lothian for:
 - Surgical planning
 - Implant pre-contouring
- The printing is done outside of NHS Lothian because there is no internal facility.
- Has a significant cost per year
- Time aspect
 - Complete procedure rehearsal can require multiple prints of different sections of procedure as plan develops.
 - External printing turn around time up to 2 weeks.
 - Short notice rescheduling of theatre time for cancer patients.
- Patient's face rebuilt with 3D printed parts (Cardiff)
 - http://www.bbc.co.uk/news/health-26543569

Orthopaedic Surgery

- Procedure planning and rehearsal.
 - Joint replacement etc.
 - Corrective surgery
- Cutting guides
- Patient specific braces and splints
- Inverness girl Hayley Fraser gets 3D-printed hand (Inverness)
Plastic Surgery

• 3D printed anatomy templates
 – Procedure planning,
 – Bone and soft tissue reconstruction guides.
• 3D printing of scaffolding for stem cell seeding and implantation.

• 3D printing helps give girl a new face

Cardiology & Cardiac surgery

• Used in adult and paediatric cases
• Pre-surgical planning examples
 – Tumour resection
 – Valve repair / replacement
 – Congenital diseases
• Patient procedure explanation
• Cross hospital case consultation
 – Services split over country

• 3D printed heart helps to save girl’s life
 – http://www.bbc.co.uk/news/health-30996500
• 3D printing makes heart surgery safer for children
 – http://www.sciencedaily.com/releases/2015/01/150129093946.htm
• 3D-printed model heart helps doctors save a little girl’s life
Neurosurgery

- Pre-Surgical planning of procedures makes the actual procedure quicker, safer and less invasive.
 - Tumour resection
 - Aneurysm surgery
 - Complex surgery

- 3D Printing Makes a Complex Brain Surgery Possible, Saving The Life of a 50-year-old Woman in China

- Surgeons use 3-D printer to prepare for surgery

Healthcare Sciences

- Radiotherapy – Bolus, phantoms etc.
- Imaging – QA and anthropomorphic phantoms, positioning rigs etc.
- Rehabilitation Engineering & Assistive Technology – customised solutions for patients etc.
- Medical Equipment – medical device customisation.
- Clinical Engineering – medical device prototyping.
- R&D – various academic and clinical research applications.
Radiotherapy example #1

- Custom bolus printing
- 3D printed bolus or surrogate surface render
 - help improve accuracy in bolus reconstruction and placement from virtual planning
- Difficult to mould around ears, nose etc
- Used for dose build-up
- Manufactured by hand using wax, gel sheets or thermoplastic

Radiotherapy example #2

- Custom phantom printing
- 3D printed phantoms for
 - Dose verification
 - Image registration
 - Machine QA
Rehabilitation Engineering and Assistive Technology

• Component manufacture for
 – custom medical equipment design
 – individual patient final use
 – custom R&D equipment design and development
 – design prototyping

• 3D Printed Assistive Technology Creation in the Clinic: A Case Study

Medical Physics Examples

• Development of custom test objects for imaging and radiation dosimetry for existing and new modalities.

Test object from 3D printed patient anatomy
3D printing of custom test phantoms

- Problems faced:
 - Simple uniform test objects have limited use in optimising modern image reconstruction algorithms.
 - Anthropomorphic test objects cost between £5k - £15k,
 - Has limited adaptation to different pathologies / imaging scenarios
- 3D printing can produce test objects adapted to specific imaging tasks and clinical indications.
 - Optimise balance between radiation dose and image quality for all patients
 - Significant cost savings.

Medical Physics Examples

- Rapid prototyping *
 - Application of 3D printing techniques in the development of prototypes decreases the time to production and improves the quality of the final product.

- Manufacturing of in-house medical devices and components. *

- Modification and customisation of medical devices.*

* All manufactured to comply with the relevant standards (Medical Device Directive etc.)
3D Research in Lothian

- Medical Imaging characteristics of 3D printed materials measured on a clinical x-ray and CT set.

- Feasibility of using 3D printed models, from 3D optical scans, during surgical reconstruction within NHS.

- Watch this space

Future applications

- Bio-printing of organs / human bodies?

- 3D printing of patient specific drugs.

- New materials for implantation or tissue equivalency.
Conclusions – 3D Printing

• A significant step forward for healthcare with huge benefits to our practice and patients.
• Not widely adopted within NHS due to money?
• Has potential to save NHS lots of money, but how to prove it?
• Only maverick groups have adopted the technology as part of their clinical practice (e.g. Maxillofacial).
• Should be made part of the patient pathway to ensure patients get the best and safest possible treatment.
• For organisations and institutes to recognise the benefits and aid in supporting adoption of & training within this emerging healthcare discipline (RCS, RCR, IPEM, IOP, IET etc.).
 – Potential for creating a network of users and providers within healthcare

References

• Inverness girl Hayley Fraser gets 3D-printed hand (Inverness)
 – http://www.bbc.co.uk/news/uk-scotland-highlands-islands-29441115
• 3D printed heart helps to save girl’s life
 – http://www.bbc.co.uk/news/health-30996506
• 3D printing makes heart surgery safer for children
 – http://www.sciencedaily.com/releases/2015/01/150129093946.htm
• Patient’s face rebuilt with 3D printed parts (Cardiff)
 – http://www.bbc.co.uk/news/health-26543569
• Good Samaritan teenager was left for dead with battered face and multiple fractures after he was beaten by a man he had stopped to help (Edinburgh)
• 3D printing helps give girl a new face
• 3D-printed model heart helps doctors save a little girl’s life