Technological tools to support active learning

Ross Galloway
School of Physics & Astronomy
University of Edinburgh
Outline

• **Context**

• **Implementation**
 – Pre-reading quizzes
 – Pencasting
 – Clicker vote evaluation (EVAF)
 – Active engagement experimental demos
 – Workshops

• **Summary**
Context

Scottish undergraduate degree system:
Bachelors degree in 4 years
Masters degree in 5 years

First year calculus-based introductory physics courses
Newtonian mechanics (1st semester)
Modern physics (2nd semester)

250-300 students
80:20 male and female
75:25 British and non-British students
Mixed cohort (50:50 majors and non-majors)
Motivation: the Traditional Classroom

Private study time

Class time
Motivation: the Flipped Classroom

Class time

Private study time
Want more on detailed pedagogy, outcomes and evaluation? See here:

bit.ly/EdPhysFlip
What happens: Course Structure

Week $n - 1$
- Personal Reading

Online Reading Quiz

Week n
- Peer Instruction
- Lectures

Q6: “What I still don’t understand is…”

Week $n + 1$
- Hand-in Assignment
- Workshops

What I still don’t understand is…”
Physics Education Research
The University of Edinburgh

Question 5: Multiple Choice
Taking $g = 10 \text{ ms}^{-2}$, how long does it take a stone thrown vertically upwards at 5.0 ms^{-1} to return to my hand?

- Correct
 - 0.5 s
 - **1.0 s**
 - 1.5 s
 - 2.0 s
 - 4.0 s

- Unanswered

Average Score: 1.78228 points
Per cent Answered:
- 4.435%
- 89.113%
- 1.21%
- 2.419%
- 1.613%
- 1.21%

Question 6: Fill in the Blank
Please tell us what you found difficult or confusing about this week's reading. If you didn't find anything confusing, tell us what you found most interesting. (Note: you may find it easier to type out your response in a text editor (e.g., Notepad) then copy and paste it in to the quiz box.)

Correct Answers

- thinking to round or not (1 question)
- didn't realise there was so much additional material in the online version.
- I found most confusing the solving equations using differentiation and integration, since up until now that was a privilege reserved to the teacher.
- the detail the content goes into is definitely more intriguing than in school.
- making estimates about physical quantities was the most difficult part.
- no real difficulties I don't think
- all good so far
- I found the aside on negligible force and non-linear dynamics interesting.
- good to review what we have covered in school, it seems such a long time ago and I feel like I had forgotten most of it. looking at problems and using the strategy to solve it as introduced in the first section I feel is useful and will help me to visualise the situations better.
- just some badly worded questions
- some of the projectile motion took some time to grasp.
- I found the use of differentials in the explanation a bit hard but interesting
- I struggled with the new style of learning, but I'm sure I will adapt
- I think the most interesting is calculating the change in energy of objects moving and colliding

Per cent Answered:
- 0.403%
Just in Time Teaching

Smart pen

Ballpoint pen with integral digitiser and microphone. Captures penstrokes and audio recording in sync.

www.livescribe.com
Responses Outline

Number of students with clickers = 325.
A bead is given a small push at position A and is constrained to slide around a frictionless circular wire in a vertical plane. Which best describes the direction of the acceleration when the bead is at the position B?

Date/Time: 2012-10-01 11:03:21 UTC
Lecturer: Ross Galloway
Show the original question
Physics Education Research
The University of Edinburgh

Impulse (pre-discussion)

- Incorrect: 29.3%
- Correct: 50.0%
- Invalid: 0%

Impulse (post-discussion)

- Incorrect: 33.0%
- Correct: 33.0%
- Invalid: 0%
Active engagement experimental demos

Just showing a demonstration is not very effective

Role of physics lecture demonstrations in conceptual learning
Kelly Miller, Nathaniel Lasry, Kelvin Chu, and Eric Mazur (2013), PRST-PER

Prediction and interpretation is important
e.g. Predict-Observe-Explain approach

Summary

- None of these tools are vital
- But they bring some advantages
 - Convenience
 - Insight
 - Flexibility
 - Scalability
 - Repeatability
 - Responsiveness
- They make it easier to do ‘small group style’ in large group classes
For every N hours you spend in Physics classes, how many hours do you spend in your own private study of Physics?

A) ~ 0
B) $\sim N/2$
C) $\sim N$
D) $\sim 2N$
E) $> 2N$
Physics Education Research
The University of Edinburgh

The bar chart illustrates the distribution of hours of private study among students in two different educational methods: Traditional and Inverted.

- **~0 hours**: Approximately 25% of students in both methods study for this amount of time.
- **~N/2 hours**: A significant portion of students (45%) in the Traditional method study for this amount of time, while fewer students in the Inverted method do so.
- **~N hours**: A smaller fraction of students (20%) in the Traditional method study for this amount of time, compared to the Inverted method.
- **~2N hours**: A small percentage of students in both methods study for this amount of time.
- **>2N hours**: Only a very small fraction of students in both methods study for this amount of time.

Bars in blue represent the Traditional method, while bars in green represent the Inverted method.
Physics Education Research
The University of Edinburgh

Hours of Private Study

- ~ 0
- ~ N/2
- ~ N
- ~ 2N
- > 2N

Fraction of Students

- Traditional
- Inverted