The course was designed for teachers of Physics and in the time available equipment had to be carried in my luggage (46kg) which restricted the length of the course to two days. The aims and the topics I decided to cover in the course were determined by meetings I had in February with teachers in Mukono, Budo and Bukinda. In brief, the aims were: improve presentation, improvise experiments, challenge pupils to think, share scarce equipment, make lessons fun with toys and go beyond the syllabus. But a prior need is for many schools to improve the storage of equipment because apparatus will not survive in working order if it is stored in a plastic box.

Commercially made apparatus was provided through the excellent offices of LabAid. I collected polythene rods, perspex sheet and aluminium sheet from local suppliers and made up sets of electrostatic apparatus, including “floaters” (see Milo and Marvin, Interactions June 2010). The electrophorus plates doubled as Chladni plates and I copied some of the ideas in Joe Brock’s “Teaching Physics in remote places” eg the CD hovercraft, diffraction using lasers, the balloon rocket. The “Prague chicken” was a copy of a toy I bought in Prague. The ballistic pendulum was tested in my kitchen.

The teachers who made the difficult journey to Bukinda enjoyed the course but the overwhelming response was that they wanted a week’s course so that they could do the experiments themselves and then retain the equipment for their own schools. This is a tall order and would take many years to effect over the whole of Uganda. The conclusion I have reached is that the IOP should press ahead with establishing centres of excellence in which equipment is stored for the use of neighbouring schools. Even so if 240V mains supply is not available the range of experiments is badly restricted.

I am happy to acknowledge the help of Alan Welch of LabAid, Byamugisha Alex and Mpamizo Gonzaga and the Rector of AJ Seminary, Bukinda, Mike Vella and Jean Johnson.

Stephen Wright